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Abstract

Multiple probing techniques have been devel-
oped in order to understand how large trans-
former language models acquire semantic and
syntactic knowledge during training. In this
paper, we focus on the extent to which pre-
trained models capture factual and common-
sense world knowledge. Differently from exist-
ing probing work that mostly analyze BERT-
like models, we also analyze ELECTRA,
which employs a different pretraining objective.
Interestingly, our results reveal that ELEC-
TRA acquires better commonsense and poorer
factual knowledge compared with MLM mod-
els. By probing BERT at different pretraining
steps, we discover that there seems to exist a
tradeoff between storing explicit facts in mem-
ory and the ability of extracting more general,
commonsense information from text.

1 Introduction

A plethora of recent works use probing to get in-
sights on what type of linguistic knowledge large
pretrained language models (PLMs) capture. These
models can encode substantial amounts of syn-
tax and semantics (Tenney et al., 2019a,c; Hewitt
and Manning, 2019; Hu et al., 2020; Shwartz and
Dagan, 2019). Moreover, recent evidence shows
that these models can act as knowledge bases and
store factual knowledge such as “Dante was born
in Florence” or that “The capital of France is
Paris” (Petroni et al., 2019; Heinzerling and Inui,
2021; Soares et al., 2019; Roberts et al., 2020).
This evidence is obtained by measuring the ability
of PLMs to fill-in-the-blanks verbalized versions
of existing knowledge base triplets.

On the other hand, the ability of these models
to acquire commonsense knowledge such as “birds
have feathers” or “rain makes the road slippery”
from text alone has been shown to happen only to
some extent and appeared until now as a consid-
erably more challenging task (Forbes et al., 2019;

Hwang et al., 2020; Porada et al., 2019). The mod-
els can capture IsA relationships, which have a
higher likelihood to be verbalized in text corpora,
but struggle on more complex ones (Hwang et al.,
2020). Recent investigations show that PLMs can-
not judge the plausibility of different events, e.g.
whether “chef-bake-cookie” is more plausible than
“fish-throw-elephant”, a particular type of common-
sense reasoning (Porada et al., 2019).

The difficulty in capturing different aspects of
commonsense knowledge derives from the fact that,
contrary to factual knowledge, the former is im-
plicit in the textual data, even in very large corpora,
and therefore it must be inferred (Talmor et al.,
2019; Zhang et al., 2020a; Forbes et al., 2019). Re-
cent approaches have investigated the use of exter-
nal knowledge bases (KBs) such as ATOMIC (Sap
et al., 2019) or ConceptNet (Liu and Singh, 2004)
to endow current PLMs with commonsense rea-
soning (Porada et al., 2019; Bosselut et al., 2019).
This has the shortcoming of relying on existing
KBs which have usually limited coverage and may
require extensive manual annotation.

Investigating how to improve commonsense
knowledge acquisition from large amount of raw
textual data appears an important endeavor. Never-
theless, in the context of PLMs, multiple questions
still remain open about how current pretraining
objectives lead, to some extent, to commonsense
knowledge acquisition from raw text, and whether
it is possible to improve upon this mechanism. In
this work, our focus is to provide additional empir-
ical evidence towards answering these questions.

Our first contribution is to analyze how large
PLMs acquire commonsense and factual knowl-
edge during training. This is in contrast to re-
cent probing studies which analyze only the final
checkpoint of a model. Moreover, instead of ana-
lyzing BERT-like models, we gain additional in-
sights by comparing the learning dynamics of mod-
els trained with starkly different pretraining objec-



tives, Masked Language Modeling (BERT; De-
vlin et al. 2019) and Replaced Token Detection
(ELECTRA; Clark et al. 2020). By using the
LAMA (Petroni et al., 2019) and CAT (Zhou et al.,
2020) probes we find that: i) ELECTRA acquires
more commonsense knowledge than BERT; ii)
common-sense knowledge is generally learnt be-
fore factual knowledge; and iii) contrary to factual
knowledge which improves over training, common-
sense performance tends in general to plateau or
decrease with additional training: it appears there
exists a trade-off between factual and common-
sense knowledge acquisition in current PLMs.

Our second contribution is to show that, by prun-
ing small magnitude weights of the pre-trained
checkpoints, the networks forget factual knowledge
while commonsense knowledge is impacted to a
lesser extent. These observations evoke recent ob-
servations in a vision setting (Hooker et al., 2020):
atypical or rare examples are learnt later in training
and are forgotten after a similar magnitude prun-
ing technique. This speaks to the fact that such
examples, akin to factual knowledge in our case,
require larger effective model capacity (Feldman
et al., 2019; Baratin et al., 2021). At this point,
our working hypothesis is that the learning pro-
cess gradually increases model capacity and leads
to memorizing training examples containing fac-
tual knowledge thus hindering acquisition of more
general concepts to explain observed data (Carlini
et al., 2020; Sagawa et al., 2020).

2 Probing Knowledge During Training

Our first step is to analyze more closely the
dynamic of knowledge learning during training.
While most past work has focused on analyzing
the representations learnt by PLMs at the end of
pretraining, we adopt a complementary approach
to answer the following questions:

1. Do different pretraining schemes cause mod-
els to acquire commonsense and factual
knowledge differently?

2. At what stages of pretraining do the models
acquire these different aspects of knowledge?

We next describe the models we consider and
their pretraining objectives. We also describe our
probing protocols and details of the experimentals
conducted in the course of this first investigation.

2.1 Pretraining Objectives

Masked Language Modeling (MLM) is an in-
stantiation of pseudo-likelihood maximization (Be-
sag, 1974) and it involves masking a fraction of the
input tokens in a sentence and then learning a con-
ditional model to predict the tokens that have been
masked out. It is essentially a fill-in-the-blanks
task where the model is tasked with learning the
conditional probability of a particular masked out
token given the context. BERT, a bidirectional
text encoder built by stacking several transformer
layers, uses this objective to learn general purpose
representations that achieve excellent results on
downstream NLU tasks (Devlin et al., 2019). There
have been multiple extensions to BERT training
that still use MLM in different forms, either by
predicting contiguous spans (Joshi et al., 2020) or
by adversarial training (Liu et al., 2020b). In this
paper, we analyze its original formulation as found
in (Devlin et al., 2019) and report probing results
for BERT-base and BERT-large.

Replaced Token Detection MLM, while highly
effective in practice, is computationally inefficent
as the models utilize in general 15% of the input to-
kens per example to learn the distribution. ELEC-
TRA (Clark et al., 2020) proposes an efficient new
pretraining task - Replaced Token Detection (RTD)
- which utilizes all tokens instead of only a frac-
tion of the example. Differently from MLM, RTD
leverages a discriminator and a generator. The
discriminator is trained to solve a binary classifica-
tion loss, where tokens that have been replaced or
corrupted in the input by a generator network are
assigned a label of 0 and ground-truth tokens are
assigned a label of 1. The generator is a BERT-like
model trained with MLM. At the end of training,
the generator is discarded and only the discrim-
inator is used. ELECTRA converges faster and
results in learning of better representations that lead
to higher quantitative performance on NLU bench-
mark tasks. We will probe for knowledge in the
discriminator which doesn’t directly use MLM, but
a binary cross-entropy loss with a non-stationary
negative sampling distribution instead. This begs
the question of whether the loss used during pre-
training leads to different dynamics of knowledge
learning. We analyze both ELECTRA-base and
ELECTRA-large.



Probe Type Example

T-Rex Factual Francesco Bartolomeo Conti was born in [MASK]. (Florence)
Google-RE Factual Mareva Galanter is a [MASK] actress and former beauty queen. (French Polynesia)
SQuAD Factual Newton played as [MASK] during Super Bowl 50. (quarterback)

ConceptNet Commonsense Joke would make you want to [MASK]. (laugh)
CAT Commonsense Paul tried to call George on the phone, but Paul wasn’t successful (✓).

Paul tried to call George on the phone, but George wasn’t successful (✗).

Table 1: Examples of the commonsense and factual probes used in the evaluation. The first four are from
LAMA (Petroni et al., 2019) and the last is a collection of commonsense tasks (details in (Zhou et al., 2020)).
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Figure 1: Probing of BERT and ELECTRA as a function of training steps. We plot the detail of each probe
performance for BERT-Base. Commonsense probes generally converge faster but then plateaus, factual probes
keep increasing.

2.2 Knowledge Probing Datasets

For testing commonsense and factual knowl-
edge acquisition during training, we recur to
LAMA (Petroni et al., 2019) and the Common-
sense Acceptability Test (CAT; Zhou et al. 2020).
We summarize these probes in Table 1.

LAMA The LAnguage Modeling Analysis
(LAMA) probes are cloze-style sentence comple-
tion tasks where the model has to fill-in-the-blanks
a missing word. Each component of the LAMA
probes is designed to test the model for a specific
type of knowledge that is learnt using pretraining.
The examples are constrained to single token an-
swers that examine different aspects of knowledge
for both factual (T-Rex, Google-RE, SQuAD) and
commonsense (ConceptNet). T-REx examples are
constructed from Wikipedia triples and include 41
types of relations (facts about places, people, chem-
ical compositions, etc). Google-RE consists of
examples that consider three types of relations -
place of birth, place of death and date of birth -
extracted from Wikipedia and considerably harder
than those in T-REx. SQuAD contains examples
from the popular question answering dataset (Ra-
jpurkar et al., 2016) rewritten as cloze-style state-
ments with single token answers. Finally, examples
in the ConceptNet split are verbalized triplets from
the omonimous KB and contain commonsense rela-
tionships between words and phrases and consists
of 16 types of relations.

CAT The Commonsense Acceptability Test
(CAT) probes (Zhou et al., 2020) for commonsense
knowledge and are adapted from exisiting com-
monsense datasets. The sentences in this corpus
differ from each other by small phrases that alter
the plausibility of such statements. The models
are evaluated by measuring whether they score sen-
tences that align with commonsense higher than
those that don’t. The dataset is also split in multiple
sub-tasks: Conjunction Acceptability, Winograd,
Sense making, Swag and Argument Reasoning.

2.3 Experimental Setup

In order to quantify the knowledge captured by
the language models at different stages of pretrain-
ing, we store checkpoints at every 50k steps of
pretraining and probe them with both LAMA and
CAT probes. We use Wikipedia and Bookcorpus
datasets1 to pretrain BERT and ELECTRA (yet to
complete).

For LAMA probes, we measure the amount of
knowledge that is captured with the precision-at-
one measure (P@1). We use the distribution of
the MLM head to mimic a ranking of tokens with
the token having the highest probability being the
top ranked one. As ELECTRA is not trained us-
ing an MLM objective, we adapt the method for
evaluating it as an MLM from (Clark et al., 2020).
The particular setup we follow is explained in the
Appendix. We compare the token ranked top by

1https://huggingface.co/datasets/



each model with the ground truth label for both
BERT and ELECTRA type models. As P@1 is
considered a strict method of evaluating the perfor-
mance of models, we also measure P@10 and find
the trends to be similar. For CAT probes, we only
measure P@1 as the model is tasked with a binary
classification task.

2.4 Results

Our results can be found in Figure 1. We are yet
to run this experiment for ELECTRA and we will
look to complete it after the course ends.

Commonsense is acquired earlier in train-
ing, while factual knowledge improves with
further training

As seen in Figure 1, commonsense performance
appear to converge earlier than factual knowledge
which for BERT requires a large number of pre-
training steps. Among the three probing methods,
the model performs best on the T-Rex dataset while
the SQuAD and the Google-RE datasets prove to
be more difficult in comparison but the perfor-
mance still increases with training. Recent work
highlighted how noise and atypical examples are
learned later during training (Toneva et al., 2018;
Hooker et al., 2020; Liu et al., 2020a; Baratin et al.,
2021) in a vision setting. Similarly, our observation
leads us to hypothesize that commonsense knowl-
edge may be supported by a large variety of training
examples and thus benefit from fast initial conver-
gence (due to gradient alignment), while factual
knowledge is shared by only few examples in the
training set and therefore is learned later. We will
expand on to this point in the next section.

ELECTRA captures more commonsense
and less factual knowledge than BERT

ELECTRA achieves better performance on the
ConceptNet probe and on the CAT probes as
compared to BERT across both variants (Base
and Large). On the contrary, BERT outperforms
ELECTRA considerably on all three of the factual
knowledge probing tasks. This leads us to suggest
that BERT is better at memorizing training data
than ELECTRA, an effect already seen in Carlini
et al. (2020) for a model trained with maximum
likelihood, GPT-2. We give an intuition for this
behavior in the final discussion.

For BERT, commonsense performance
plateaus after a given amount of training

There is an apparent trade-off between the abil-
ity of the model to learn commonsense and fac-
tual knowledge: it exists a point during training
when the performance on the commonsense probes
plateaus or even decreases while the performance
on factual knowledge probes increases. The trade-
off happens during the standard pre-training regime
(400k-600k steps) in the case of BERT. This points
to the interesting possibility that memorizing facts
hinders further extraction of commonsense knowl-
edge.

Summary Factual knowledge improves later in
training. This points to the fact that the model
starts using up more capacity to fit facts in the data.
This elastic capacity allocation has been pointed
out in previous work (Baratin et al., 2021). The
increase in effective capacity may enhance memo-
rization (Carlini et al., 2020; Sagawa et al., 2020)
which, in turn, hinders extraction of more general
commonsense knowledge. ELECTRA outperforms
BERT in commonsense extraction which may be
linked to its different objective function providing
a different inductive bias to the model.

3 Effect of Magnitude Pruning

In this section, our aim is to explore what kind
of knowledge is retained by a pruned network, i.e.
with reduced capacity. This will help us clarify
some of the observations made earlier.

3.1 Experimental Setup

Magnitude pruning (Han et al., 2015) usually con-
sists of three simple steps:

1. Select a target percentage of model weights to
be pruned denoted by k%.

2. Calculate a threshold such that k% of weight
magnitudes are under that threshold.

3. Remove those weights.

Our experimental procedure is as follows: we prune
the fully-connected layers and biases of the pub-
licly available pretrained BERT checkpoint (ob-
tained after 1M steps of pre-training) and then com-
pare the performance of the pruned BERT model
on the LAMA probe suite to investigate what kind
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Figure 2: Pruning a pretrained BERT checkpoint impacts factual knowledge (Google-RE, T-Rex, SQuAD) more so
than commonsense (ConceptNet) across all pruning threshold (10%, 20%, 30%).

of knowledge is lost or retained. We evaluate the de-
crease in performance for different values of prun-
ing threshold k ∈ {10, 20, 30, 40}. We present the
results for k = 20% in Figure 2 (and for other
values, see Appendix).

3.2 Results

Pruning BERT hurts factual knowledge
more so than commonsense

This indicates that factual knowledge is stored
to a greater extent in the smaller weights in the
network. This pattern of results holds across model
sizes (Base and Large). Because pruning dimin-
ishes the model capacity, this suggests that learning
factual knowledge requires a larger capacity model.

This finding can be related to what has been
empirically observed by Hooker et al. (2020) in the
case of vision models. The authors investigate the
effect of pruning and weight quantisation on the
classification performance of ResNet models and
determine that certain examples, which they label
Pruning Identified Examplars (PIE), are affected
by pruning to a significantly higher proportion as
compared to other examples. It was found that
PIEs are atypical or belonging to long-tail classes
(under-represented in the dataset) and thus more
challenging even to the non-pruned model.

Our findings suggest that, in the case of PLMs,
sentences containing factual knowledge, especially
when containing information pertaining to places
of birth, death or date of birth, etc. may be char-
acteristically similar to PIEs, i.e. examples con-
taining idiosyncratic information not shared with
many other examples in the dataset. Therefore,
these must be fit by augmenting the model’s ef-
fective capacity. Multiple works have highlighted
the fact that neural networks tend to prefer sim-
ple, low-complexity solutions early in training and
can increase capacity later during training to ac-

comodate more challenging, atypical examples or
noise (Baratin et al., 2021; Toneva et al., 2018;
Liu et al., 2020a). This behavior is well-reflected
by our previous observation, which is that factual
knowledge seems to improve during the later stages
of training.

3.3 Datasets

In addition to the LAMA and CAT probes, we re-
port performance on commonsense downstream
tasks such as Swag, HellaSwag and PEP3K plau-
sibility classification. Finally, we also probe our
models with the BLIMP (Warstadt et al., 2020)
suite of syntactic evaluation tests, to evaluate how
our modified training procedure impacts the acqui-
sition of syntax. We present these datasets next.

Swag, HellaSwag Swag (Zellers et al., 2018) is
a dataset for commonsense NLI which consists of
multiple choice questions. For each question, the
model is given a context from a caption and four
choices for what might follow that particular state-
ment. There exists only one correct answer which
the model has to choose. HellaSwag (Zellers et al.,
2019) is a more difficult version of the Swag dataset
where the choices are created using an adversiarial
filtering approach.

PEP3K The crowdsourced Physical Event Plau-
sibility ratings datasets (PEP3K) of (Wang et al.,
2018; Porada et al., 2021), measures the ability to
identify plausible events as chef-bake-cookie from
less plausible ones fish-throw-elephant. It is not a
trivial problem for models to acquire this ability
as plausibility often is something that is grounded
in the real world which might not necessarily be
captured in language. PEP3K consists of 3,062
events rated as physically plausible or implausible.
We follow (Porada et al., 2021) and use AUC as
our metric. We follow the valid/test split used by
(Porada et al., 2021) and we create a train set using



Model Swag HellaSwag

BERT 81.6 40.5

Table 2: Performance of Base variants of BERT and
ELECTRA on the dev set of Swag and test set of Hel-
laSwag.

70% of their valid split and the rest is used as the
validation set. The test set remains unchanged.

BLIMP BLIMP are behavioral linguistic probes
built on top of linguistic minimal pairs. They test
for grammatical acceptability and include syntax,
semantics and morphology tests. The sentences in
this corpus differ from each other by small phrases
which alters the grammatical soundness of the state-
ments. We probe the models by measuring whether
they assign higher scores to grammatically accept-
able sentences over incorrect ones. We compute
the score of a sentence by sequentially masking
words one at a time and compute the average of log
probabilities of the masked words.

3.4 Discussion

ELECTRA vs BERT Our interpretation to the
observation that ELECTRA and BERT capture
factual and commonsense to different extents re-
lies on the difference between the loss function
they use during pre-training and its relationship
to the amount of memorization that takes place
during training. Carlini et al. (2020) shows that
LMs trained with maximum likelihood can accu-
rately store the training data and can be subject to
extraction attacks. ELECTRA’s discriminator is
implicitly encouraged to do so only to the extent
to which the distribution of noise samples is close
to the true data distribution, e.g. the discrimina-
tor may not need to memorize that “The capital of
Germany is [MASK]”, where [MASK] = Berlin,
if, during training, the generated samples for the
masked position are cities of other countries, for
example. The contrastive loss may be solved by re-
lying on a feature indicating the masked token must
be a city in Germany. In order for this hypothesis
to be true, the generator must make errors. Curi-
ously, (Clark et al., 2020) reports best performance
when samples come from a generator smaller than
the discriminator (thus more prone to errors).

Factual probes Although ELECTRA model im-
proves commonsense extraction, one may wonder
whether the drop in capturing factual knowledge

may harm our model for downstream tasks that re-
quire it. Recent work investigates the use of exter-
nal knowledge bases for knowledge-intensive NLP
tasks to complement current PLMs models (Lewis
et al., 2021). In that case, capturing factual knowl-
edge during training may be less critical.

4 Related Works

Probing pretrained language models has been
widely explored. Initial work started with
exploring how the models captures linguistic
capabilities (Peters et al., 2018; Goldberg, 2019;
Ettinger et al., 2018; McCoy et al., 2019; Goldberg,
2019; Tenney et al., 2019b; Jawahar et al.,
2019). There have been investigations into how
these models acquire factual and commonsense
knowledge (Petroni et al., 2019; Kassner and
Schütze, 2020; Forbes et al., 2019; Rogers et al.,
2020; Singh et al., 2020; Talmor et al., 2020;
Kassner et al., 2020; Weir et al., 2020; Zhang
et al., 2020b). In this work, we focus on gaining
insights about at what stage during pre-training
that knowledge acquired. This is also studied
concurrently with our work in Liu et al. (2021),
albeit using RoBERTa (Liu et al., 2019).

PLMs can be used as knowledge bases (Petroni
et al., 2019). Some works used this to complete
commonsense knowledge graphs (Bosselut et al.,
2019; Roberts et al., 2020; Zhang et al., 2020a).
Recent work exposed the risks for data privacy as
private information can be easily extracted (Carlini
et al., 2020), which raises the question whether
such memorization is desired. Other works use
external knowledge bases to induce commonsense
in PLMs (Porada et al., 2021).

Pruning PLMs has been explored before with the
focus of reducing the size of the models usually at
the expense of downstream performance (Gordon
et al., 2020; Fan et al., 2019; Prasanna et al., 2020;
Chen et al., 2020; Tang et al., 2019). Our method
is inspired by these works, although our motivation
is different and we can improve performance on
downstream tasks.

5 Conclusion

We demonstrated dynamics of learning of factual
and commonsense knowledge. We used our in-
sights to devise a technique to delay memorization
of factual knoweldge, called Iterated Reset. This
leads, both in Base and Large versions, to mod-



els capturing more commonsense and less factual
knowledge. We believe that our results will benefit
building data efficient models, which learn more ro-
bust features from input data by limiting memoriza-
tion. Our results could also have ramifications for
privacy considerations regarding large pretrained
language models (Carlini et al., 2020).
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