
LoRA, QLoRA and beyond!
Debarshi Deka

Satya Sai Srinath

CS 839 Presentation



Motivation

Moore’s law for Deep Learning!

Source: https://huggingface.co/blog/large-language-models



Motivation

LLMs becoming good as zero/few shot learners



Motivation
But are these models good at every task!?

Source: https://www.nytimes.com/wirecutter/reviews/best-multitool/



Motivation

One possible solution - Fine tune

- Finetune all layers
- Finetune only few layers

- Which layers to finetune?

Source: https://pyimagesearch.com/2019/06/03/fine-tuning-with-keras-and-deep-learning/



PEFT (Parameter Efficient Fine tuning)

Source: https://huggingface.co/docs/peft/index



PEFT (Parameter Efficient Fine tuning)

Source: https://arxiv.org/pdf/2303.15647.pdf



More on PEFT

Source: https://junjiehu.github.io/cs769-fall23/assets/pdf/anlp-15-peft.pdf 

1. Huggingface
2. Advanced NLP grad 

level courses!

https://junjiehu.github.io/cs769-fall23/assets/pdf/anlp-15-peft.pdf


LoRA

- Became quite popular - 1400 citations in 2yrs

Hypothesis from previous works

- The weights of a pre trained transformer have a low “intrinsic dimension” 
and can still learn efficiently despite a random projection to a smaller 
subspace

i.e the weights might be over-parametrized.

Reference: https://arxiv.org/pdf/2012.13255.pdf 

https://arxiv.org/pdf/2012.13255.pdf


LoRA

LoRA hypothesis - The updates to the weights can also be in “low 
rank”

       If W ɛ Rdxk, then B ɛ Rdxr;A ɛ Rrxk where r << min(d,k)

- W has d*k while A,B in total has (d+k)*r



LoRA

Motivating use case - Language modeling

Original Fine Tuning
- Number of trainable parameters: 

Same as original model

LoRA
- Number of trainable parameters: 

f(original model)  ~ can be as small 
as 0.01%



LoRA
Advantages

- Reduction in memory and storage usage

On GPT-3 175B, we reduce the VRAM consumption during training from 1.2TB to 350GB. 
With r = 4 and only the query and value projection matrices being adapted, the checkpoint 
size is reduced by roughly 10,000  (from 350GB to 35MB)

We still need the 350GB model during deployment; however, storing 100 adapted models 
only requires 350GB + 35MB * 100 = 354GB as opposed to 100 * 350GB = 35TB. 



LoRA
Advantages

- No additional latency
- Easily switchable to new tasks (just replace BA)

Limitations

- Can’t batch inputs of different tasks because the matrices A, B will be 
generalizable and not task specific



LoRA

LoRA is fast in terms of 
inference latency

The difference pronounces at 
low batch-sizes and 
sequence-lengths!

Why?

- Hardware/Model parallelism
- Adapters needs to be 

computed sequentially



LoRA

Experimental setup

LoRA applied only on attention weights. 

MLP, LayerNorms and biases are frozen

- BitFt: Train only bias
- Prefix-Embedding Tuning (PreEmbed): Add learnable tokens to prompts
- Prefix-Layer Tuning (PreLayer): Activations after each layer are learnable!
- AdapterH: Add adapters after attention module, after MLP
- AdapterL: Add adapters after MLP and LayerNorm
- AdapterD: Drop some adapter layers for efficiency
- LoRA: Add trainable “low-rank” matrices to Wq and Wv



LoRA
Encoder-only models, NLU (Natural Language Understanding)



LoRA

Decoder-only models, NLG tasks



LoRA
NLU on larger models!



LoRA
Question - Is having more trainable parameters better for any 
PEFT/full-finetune method?

More special tokens might cause the input distribution to shift further from 
pre training data distribution



LoRA
Question - What matrices to chose for LoRA?

Query and Value matrices are a good bet! 



LoRA
Question - High rank but few matrices or low rank but many matrices?

Low rank but many matrices is a better choice! But why?



LoRA
Intuition: Increasing r doesn’t cover a more meaningful subspace i.e whatever 
is covered by smaller matrix is covered by bigger matrix!



LoRA
Subspace similarity between different random seeds

XYZ



LoRA
Question - Is there any correlation between W and delta W?

Both are correlated. Delta W only amplifies directions that are not emphasized in 
W!



LoRA
Summarizing

● Goal: Reduce computational and memory requirement for fine-tuning
● Idea: Using low-rank matrix updates

CAN WE GO FURTHER?



Precision

Floating Point Representation: [Sign] [Exponent] [Mantissa]

● Use 64 or 32 bits of memory to represent each floating point
● Can we go lower? (Say 16-bit)

How does it affect accuracy?



Precision

Figure 5: Accuracy comparison with various floating point representation. 
https://arxiv.org/abs/2301.12809



Quantization

● Lowering precision further causes poor inference quality
● Main Idea: “rounding” from one data type to another. 

○ For example: 32-bit floating point to 8-bit integers
● Problem:

○ Information loss
○ Need some technique to prevent loss of information

● Techniques:
○ Zero-point quantization
○ Absolute maximum (absmax) quantization



Quantization



‘Quantized’ LoRA

Advantages

● Lower computational burden
● Lower memory usage

Disadvantages

● Accuracy?



qLoRA

● BFloat16 is classical fine-tuning
● Float4 and NFloat4 + DQ are two QLoRA fine-tunings
● Almost equal performance

Why? 



qLoRA

● Only frozen parameters are quantized.
● During inference, the frozen 8-bit parameters are de-quantized to 32-bit.
● The trainable parameters can fix or undo the errors that were added when 

quantizing and de-quantizing the non-trainable weights.
● Can go even as low as 4-bit integers



Variants!

Monarch matrices - ICML 2022 Outstanding paper runner up!



Key Takeaways and thoughts..!

● Foundational models are huge and we need smarter techniques for finetuning
● Some of the not-so efficient techniques are:

○ Traditional Transfer Learning
○ Adapter Layers
○ Prefix Tuning

● Efficient techniques:
○ LoRA: Using low-rank matrix updates
○ qLoRA: Quantize the frozen parameters in LoRA and dequantize them during inference

● Other techniques:
○ Meta-learning
○ Cross-Domain adaptation
○ BitFit etc.



Thank you


