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Motivation

Moore’s law for Deep Learning!
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Motivation

LLMs becoming good as zero/few shot learners

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu *! Rewon Child! David Luan' Dario Amodei **' Ilya Sutskever ™!

Language Models are Few-Shot Learners

Tom B. Brown™ Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan' Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry
Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei

OpenAl



Motivation

But are these models good at every task!? ;;

Source: https://www.nytimes.com/wirecutter/reviews/best-multitool/



Motivation

One possible solution - Fine tune e o
I ]
- Finetune all layers ‘°°"~"1<35’” ‘”"”m‘?f”’
- Finetune only few layers o= cow
- Which layers to finetune? ' y
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Source: https://pyimagesearch.com/2019/06/03/fine-tuning-with-keras-and-deep-learning/



PEFT (Parameter Efficient Fine tuning)

1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

2. Prefix Tuning: Prefix-Tuning; Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can

Be Comparable to Fine-tuning Universally Across Scales and Tasks

3. P-Tuning: GPT Understands, Too

4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning
5. AdalLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
6. LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention

7. 1A3: Infused Adapter by Inhibiting and Amplifying Inner Activations

Source: https://huggingface.co/docs/peft/index



PEFT (Parameter Efficient Fine tuning)

additive selective
o
BitFit LN Tuning
Attention Tuning
Diff-Pruning
adapters Fish-Mask LT-SFT

FAR

soft prompts

reparametrization-based

Source: https://arxiv.org/pdf/2303.15647 .pdf



More on PEFT

1. Huggingface
2. Advanced NLP grad
level courses!

CS769 Advanced NLP
Parameter-Efficient
Fine-Tuning (PEFT)

Rheeya Uppaal, Junjie Hu

WISCONSIN

ERSITY OF WISCONSIN-MADISON

https://junjiehu.qithub.io/cs769-fall23/

Source: https://junjiehu.github.io/cs769-fall23/assets/pdf/anlp-15-peft.pdf



https://junjiehu.github.io/cs769-fall23/assets/pdf/anlp-15-peft.pdf

LoRA

- Became quite popular - 1400 citations in 2yrs

Hypothesis from previous works

- The weights of a pre trained transformer have a low “intrinsic dimension”
and can still learn efficiently despite a random projection to a smaller
subspace

i.e the weights might be over-parametrized.

Reference: https://arxiv.orq/pdf/2012.13255.pdf



https://arxiv.org/pdf/2012.13255.pdf

LoRA

LoRA hypothesis - The updates to the weights can also be in “low
rank”

h=Wox+ AWz = Wyx + BAx

If W e R then B € R™":A ¢ R™ where r << min(d,k)

Pretrained

Weights

- W has d*k while A,B in total has (d+k)*r W e Raxd

X | |

Figure 1: Our reparametriza-
tion. We only train A and B.



LoRA

Motivating use case - Language modeling

Original Fine Tuning LoRA
- Number of trainable parameters: - Number of trainable parameters:
Same as original model f(original model) ~ can be as small
as 0.01%
|y |yl

mq&)xx Z Zlog(Pq>(yt|$,y<t)) mgx Z Zlog(P<I>0+A<I>(@)(yt|$>y<t))
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LoRA

Advantages

- Reduction in memory and storage usage

On GPT-3 175B, we reduce the VRAM consumption during training from 1.2TB to 350GB.
With r = 4 and only the query and value projection matrices being adapted, the checkpoint
size is reduced by roughly 10,000 (from 350GB to 35MB)

We still need the 350GB model during deployment; however, storing 100 adapted models
only requires 350GB + 35MB * 100 = 354GB as opposed to 100 * 350GB = 35TB.



LoRA

Advantages

- No additional latency
- Easily switchable to new tasks (just replace BA)

Limitations

- Can’t batch inputs of different tasks because the matrices A, B will be
generalizable and not task specific



LoRA

LoRA is fast in terms of
inference latency

The difference pronounces at
low batch-sizes and
sequence-lengths!

Why?

Hardware/Model parallelism
Adapters needs to be
computed sequentially

Batch Size 32 16 1
Sequence Length 512 256 128
|O] 0.5M 11M 11M
Fine-Tune/LoRA | 1449.4+0.8 338.0+0.6 19.8+2.7
Adapter™ 1482.0+1.0 (+2.2%) 354.840.5 (+5.0%) 23.9+2.1 (+20.7%)
Adapter”! 1492.24+1.0 (+3.0%) 366.3+0.5 (+8.4%) 25.84+2.2 (+30.3%)

Table 1: Infernece latency of a single forward pass in GPT-2 medium measured in milliseconds, av-
eraged over 100 trials. We use an NVIDIA Quadro RTX8000. “|©|” denotes the number of trainable
parameters in adapter layers. AdapterL and AdapterH are two variants of adapter tuning, which we
describe in[Section 5.1} The inference latency introduced by adapter layers can be significant in an
online, short-sequence-length scenario. See the full study in|Appendix B}



LoRA

Experimental setup
LoRA applied only on attention weights.
MLP, LayerNorms and biases are frozen

- BitFt: Train only bias

- Prefix-Embedding Tuning (PreEmbed): Add learnable tokens to prompts

- Prefix-Layer Tuning (PreLayer): Activations after each layer are learnable!
- Adaptert: Add adapters after attention module, after MLP

- Adapter": Add adapters after MLP and LayerNorm

- Adapter®: Drop some adapter layers for efficiency

- LoRA: Add trainable “low-rank” matrices to Wq and W



LoRA

Encoder-only models, NLU (Natural Language Understanding)

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
ROBypge (FT)* 125.0M| 87.6 94.8 90.2 63.6 92.8 919 78.7 91.2 864
RoBpgse (BitFit)* 0.IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 852
RoBpase (AdptD)"‘< 0.3M|87.140 94.24 1 885411 60.814 93.111 90249 71.5407 89.7L3 844
RoBpase (AdptD)* 09M |87.3+1 94.7+3 88411 62.649 93.042 90.640 75.9422 903+, 854
RoBpase (LORA) 0.3M|87.545 9514+, 89.74+7 63441, 93313 908, 86.6.L7 91.5,, 87.2
RoBiaree (FT)* 355.0M| 90.2  96.4 90.9 68.0 947 922 86.6 92.4 889
ROB]Mge (LORA) 0.8M 90.6i42 96.2i‘5 90.911'2 68.2i|‘9 94-913 91.6i41 87.4i2‘5 92.6i2 89.0
RoBiarge (AdptP)T 3.0M|90.2+3 96.1+3 90.2+7 683110 94.8+2 9191 83.8409 92.11+7 884
RoBiarge (Adptp)'l‘ 0.8M[90.5+3 96.6., 89.711» 67.8425 94.8+3 91.74, 80.1409 91944 87.9
RoBiarge (AdptH)T 6.0M 89945 96.243 88.7429 66.5+44 94.742 92141 834411 91.0417 87.8
RoBiarge (AdptH)T 0.8M[90.3+3 96.3+5 87.7417 663420 94.7+2 91.541 72.9429 91.5+5 86.4
ROB]arge (LORA)T 0.8M 90.6:{:,2 96.2:{:,5 90-2i1.0 68.2i|_9 94.8:L,3 91.6i,2 85.25:1,1 92-3ﬂ:.5 88.6
DeBxxi (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 929 91.1
DeBxxL (LoRA) 4TM 919+, 96917 92.6+6 724411 96.0+1 929+ 94914 93.0L, 913

Table 2: RoOBERTapase, ROBERTa e, and DeBERTaxx;, with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. } indicates runs configured in a setup
similar to Houlsby et al. (2019) for a fair comparison.



LoRA

Decoder-only models, NLG tasks

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M | 68.2 8.62 46.2 71.0 247
GPT-2 M (Adapter")* 0.37M | 66.3 8.41 45.0 69.8 2.40
GPT-2 M (Adapter™)* 11.090M | 689 8.71 46.1 71.3 )
GPT-2 M (Adapter™) 11.09M | 67316 850107 4604, 70715  2444q
GPT-2 M (FT™P?)* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LORA) 0.35M 70-4;|;.1 8.851—_02 46.8j:.2 71.8;|:.I 2.531‘02
GPT-2 L (FT)* 774.03M | 68.5 8.78 46.0 69.9 2.45
GPT-2 L (Adapter") 0.88M | 69.14, 8.68+03 463410 Tl4i, 2494y
GPT-2 L (Adapter™) 23.00M | 68913 87040 4614, 7134, 2450
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 1.7 2.47
GPT-2 L (LoRA) 0.7 | 7041 8.89.0 46.8., 72.04 5 247400

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.



LoRA

NLU on larger models!

# Trainable | WikiSQL MNLI-m SAMSum
Model&Method Parameters | Acc. (%) Acc. (%) R1/R2/RL
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M e 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 6.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (AdapterH) 7.1M 71.9 89.8 53.0/28.9/44.8
GPT-3 (AdapterH) 40.1IM . 142 91.5 53.2/29.0/45.1
GPT-3 (LoRA) 4. 7™M 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37.TM 74.0 91.6 53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around +0.5%, MNLI-m around 40.1%, and SAMSum around
40.2/£0.2/40.1 for the three metrics.



LoRA

Question - Is having more trainable parameters better for any
PEF T/full-finetune method?

WikiSQL MultiNLI-matched
0.75 — ,, 0.92 | —
\ 4 WIES--"3 " [ % Vo V-V~

§ e KAIKX =% XX X==%
< 0.70 K-k
2 2 2N U X~ ek .
(¥] » \
g * N Method S
S 0.65 ¥ e Fine-Tune 0.88 + 4 H
£ - PrefixEmbed
2 0.60 f * PrefixLayer 0.86
§ % Adapter(H) L

0.55 ¥ Lofa 0.84

6 4 8 9 10 11 6 7 8 9 10 11
logq1o # Trainable Parameters logyo # Trainable Parameters

Figure 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation
methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.

See for more details on the plotted data points.

More special tokens might cause the input distribution to shift further from
pre training data distribution



LoRA

Question - What matrices to chose for LoRA?

| # of Trainable Parameters = 18M

Weight Type W, Wk W W, W, Wi W, W, W, Wi, W, W,
Rank » 8 8 8 + 4 2

WikiSQL (£0.5%) | 70.4 70.0 73.0 73.2 71.4 73.7 73.7
MultiNLI (£0.1%) | 91.0 90.8 91.0 91.3 91.3 91.3 91.7

Table 5: Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting both W, and
W, gives the best performance overall. We find the standard deviation across random seeds to be
consistent for a given dataset, which we report in the first column.

Query and Value matrices are a good bet!



LoRA

Question - High rank but few matrices or low rank but many matrices?

| WeightType |r=1 r=2 r=4 r=8 r=64

- W, 688 696 705 704 700
Ml Ql(l:0%) W,, W, 734 733 737 738 T35
Wy Wi Wo, W, | 741 737 740 740 739

W, 907 909 911 907 907

MultiNLI (£0.1%) W,, W, 913 914 913 916 914
W, We.W,,W, | 912 917 917 915 914

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank . To our surprise, a
rank as small as one suffices for adapting both W, and W,, on these datasets while training W, alone
needs a larger . We conduct a similar experiment on GPT-2 in

Low rank but many matrices is a better choice! But why?



LoRA

Intuition: Increasing r doesn’t cover a more meaningful subspace i.e whatever
is covered by smaller matrix is covered by bigger matrix!

¢(Ar=64rAr=8! Irj)

| |9

l}'9’12345678 12345678
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Figure 3: Subspace similarity between column vectors of A,—_g and A,—¢4 for both AW, and AW,,.
The third and the fourth figures zoom in on the lower-left triangle in the first two figures. The top
directions in » = 8 are included in » = 64, and vice versa.
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LoRA

Subspace similarity between different random seeds

XYZ

$(Ar—6a,A'r= 64,1, J)

AW, Random Gaussian
1 .
8 ~ 0.5
16 -0.4
24
0.3
= 32
40 0.2
48 0.1
56 I
I 0.0
N onotogtost o ~ N onNotoasost o ~ N onogtotogst o
NANMMM< < inn NANMMM< < nn NANMMMS <N
J J J

Figure 4: Left and Middle: Normalized subspace similarity between the column vectors of A, —¢4
from two random seeds, for both AW, and AW, in the 48-th layer. Right: the same heat-map
between the column vectors of two random Gaussian matrices. See for other layers.



LoRA

Question - Is there any correlation between W and delta W?

r—i# r— 64
AW, W, Random | AW, W, Random

WUTW,VT|lp=] 032 2167 002 | 1.90 3771 033

Table 7: The Frobenius norm of UTW,V'T where U and V are the left/right top 7 singular vector
directions of either (1) AW, (2) W, or (3) a random matrix. The weight matrices are taken from
the 48th layer of GPT-3.

Both are correlated. Delta W only amplifies directions that are not emphasized in
wW!



LoRA

Summarizing

e Goal: Reduce computational and memory requirement for fine-tuning
e Idea: Using low-rank matrix updates

CAN WE GO FURTHER?



Precision

Floating Point Representation: [Sign] [Exponent] [Mantissa]

e Use 64 or 32 bits of memory to represent each floating point
e Can we go lower? (Say 16-bit)

How does it affect accuracy?



Precision

100

__________

Accuracy (%)

e -e Train 32-bit
B @ Train 16-bit |]
e—e Test 32-bit
=—a Test 16-bit

200 400 600 860 1000
Epochs

Figure 5: Accuracy comparison with various floating point representation.
https://arxiv.org/abs/2301.12809



Quantization

e Lowering precision further causes poor inference quality

e Main ldea: “rounding” from one data type to another.
o For example: 32-bit floating point to 8-bit integers

e Problem:
o Information loss
o Need some technique to prevent loss of information

e Techniques:

o Zero-point quantization
o  Absolute maximum (absmax) quantization



Quantization

Fp16 vector
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‘Quantized’ LoRA

Advantages

e Lower computational burden
e Lower memory usage

Disadvantages

e Accuracy?



gLoRA

e BFloat16 is classical fine-tuning
e Float4 and NFloat4 + DQ are two QLoRA fine-tunings
e Almost equal performance

Mean 5-shot MMLU Accuracy

LLaMA Size 7B 13B 33B 65B Mean
Dataset Alpaca FLANv2 Alpaca FLANv2 Alpaca FLANv2 Alpaca FLAN v2

BFloat16 384 45.6 47.2 50.6 7.7 60.5 61.8 62.5 53.0
Float4 372 44.0 47.3 50.0 55.9 58.5 61.3 63.3 52.2

NFloat4 + DQ  39.0 44.5 47.5 50.7 7.3 59.2 61.8 63.9 53.1

Why?



gLoRA

e Only frozen parameters are quantized.

e During inference, the frozen 8-bit parameters are de-quantized to 32-bit.

e The trainable parameters can fix or undo the errors that were added when
quantizing and de-quantizing the non-trainable weights.

e (Can go even as low as 4-bit integers



Variants!

Monarch matrices - ICML 2022 Outstanding paper runner up!

Sparse Sparse
1 1 1
E ] < [raining —/;
aHo
Monarch matrices A o> Monarch matrices
................... @ ¢
Dense S Dense
: 08
L3,
2Ge
@ 2y,
/ 9%
- [raining -—\‘b
Pretrained BERT/
Random Init
Initial Model End Model

Figure 1: Monarch matrices unlock several ways to train sparse and dense models: end-to-end training a
sparse (Monarch) model can be 2x faster than dense training thanks to its hardware efficiency; sparse-to-dense
“reverse sparsification” can speed up training of large models such as GPT-2; and our dense-to-sparse Monarch
projection algorithm can transfer knowledge from pretrained dense model to Monarch model and speed up
BERT fine-tuning.



Key Takeaways and thoughts..!

e Foundational models are huge and we need smarter techniques for finetuning

e Some of the not-so efficient techniques are:
o Traditional Transfer Learning
o Adapter Layers
o  Prefix Tuning

e Efficient techniques:

o LoRA: Using low-rank matrix updates

o gLoRA: Quantize the frozen parameters in LORA and dequantize them during inference
e Other techniques:

o Meta-learning

o Cross-Domain adaptation
o BitFit etc.



Thank you



